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Abstract Glycosidases, including β-D-glucosidase, are
involved in a variety of metabolic disorders such as
diabetes, viral or bacterial infections and cancer. Accord-
ingly, we were prompted to find new β-D-glucosidase
inhibitors. Towards this end we scanned the pharmaco-
phoric space of this enzyme using a set of 41 known
inhibitors. Genetic algorithm and multiple linear regression
analyses were employed to select an optimal combination
of pharmacophoric models and physicochemical descriptors
to yield self-consistent and predictive quantitative structure-
activity relationship (QSAR). Three pharmacophores
emerged in the QSAR equations, suggesting the existence
of more than one binding mode accessible to ligands within
the β-D-glucosidase pocket. The successful pharmaco-
phores were complemented with strict shape constraints in
an attempt to optimize their receiver-operating characteris-
tic (ROC) curve profiles. The validity of the QSAR
equations and the associated pharmacophoric models were
established experimentally by the identification of several β-

D-glucosidase inhibitors retrieved via in silico search of two
structural databases, namely the National Cancer Institute
(NCI) list of compounds, and our in-house structural
database of established drugs and agrochemicals (DAC).

Keywords β-D-glucosidase inhibitor .

Quantitative structure-activity relationship .

In silico screening . Pharmacophore modeling .

Shape constraints . Receiver-operating characteristic curve

Introduction

Glycosidases are enzymes that are widespread in living
organisms [1, 2]. They catalyze the hydrolysis of glycosidic
bonds in carbohydrates and glycoconjugates, resulting in
low-molecular weight monosaccharides and oligosacchar-
ides. Glycosidases, including β-D-glucosidase, are involved
in a variety of metabolic disorders and diseases such as
diabetes, viral or bacterial infections and cancer. Therefore,
the inhibition of glycosidases, including β-D-glucosidase,
has many potential applications, e.g., antidiabetic, antiviral
(HIV, influenza) and anticancer [3–8].

The intense interest during the last decade in the
chemistry, biochemistry and pharmacology of glycosidase
inhibitors has led to the discovery of many types of natural
and synthetic glycosidase inhibitors [9–14]. All previous
studies have dealt with glycosidase inhibitors including
sugar-mimics (azasugars and carbasugars) and their ana-
logues; however, no attempts have been made to discover
new scaffolds as glycosidase inhibitors that have better
chemical stabilities, pharmacokinetic profiles and higher
potencies [9–14].

The current interest in the development of new β-D-
glucosidase inhibitors, combined with the lack of adequate
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computer-aided drug discovery efforts in this area, promp-
ted us to explore the possibility of developing ligand-based
three-dimensional (3D) pharmacophore(s) integrated within
a self-consistent quantitative structure-activity relationship
(QSAR) model for β-D-glucosidase inhibitors. The phar-
macophore model(s) can be used as 3D search query(ies) to
mine 3D libraries for new β-D-glucosidase inhibitors, while
the QSAR model helps to predict the biological activities of
the captured compounds and therefore prioritize them for in
vitro evaluation.

The fact that all reported β-D-glucosidase inhibitors are
slow binding/transition state analogue (TSA) sugar-mimics
[9–14] complicates pharmacophore modeling and subse-
quent in-silico search. TSAs resemble the substrate at its
postulated transition to products, implying that such inhib-
itors require stringent steric and 3D provision in order to
dock into the enzymatic binding site during its sterically
demanding high-energy transition state. TSAs are known to
be much more tightly bound to the targeted enzyme than their
ground state counterparts (i.e., substrate analogues), which
further supports the notion of pronounced sensitivity of TSA-
enzyme complexes to slight misalignments among their
complementary attractive groups [15–17]. This conduct is
expected of a rugged structure-activity surface, which limits
the ability of the pharmacophore theory to explain activity/
inactivity variations among training compounds. In fact,
pharmacophore modeling requires continuous bioactivity
variation attributable to the presence or absence of certain
chemical features, i.e., it requires a smooth SAR surface.

The pronounced sensitivity of TSAs to slight structural
modifications is also expected to complicate the subsequent
use of pharmacophore models as 3D search queries to mine
for new hits. Pharmacophore models would be too lax and
therefore promiscuous in capturing TSAs as in-silico hits [18].

In fact, no previous pharmacophore modeling efforts
have been reported for β-D-glucosidase inhibitors, probably
as a consequence of their rugged SAR. Accordingly, we
were prompted to hybridize our QSAR-based pharmaco-
phore models with tight ligand shapes and to use the
resulting combination as 3D search queries.

We previously reported the use of this innovative approach
towards the discovery of new inhibitory leads against
glycogen synthase kinase 3β [19], dipeptidyl peptidase
[20], hormone sensitive lipase [21], bacterial MurF [22],
protein tyrosine phosphatase 1B [23], influenza neuramin-
idase [24] and cholesteryl ester transfer protein [25].

We employed the HYPOGEN module from the CATA-
LYST software package to construct numerous plausible
binding hypotheses for β-D-glucosidase inhibitors [26].
Subsequently, genetic function algorithm (GFA) and mul-
tiple linear regression (MLR) analyses were employed to
search for an optimal QSAR that combines high-quality
binding pharmacophores with other molecular descriptors,

and is capable of explaining bioactivity variation across a
collection of diverse β-D-glucosidase inhibitors. Thereafter,
the optimal pharmacophores were complemented with tight
shape constraints and used as 3D search queries to screen
several available virtual molecular databases for new β-D-
glucosidase inhibitors.

The optimal pharmacophores were further validated by
evaluating their ability to successfully classify a list of
compounds as active or inactive by assessing their receiver-
operating characteristic (ROC) curves. Subsequently, the
optimal pharmacophores were complemented with tight
shape constraints to enhance their ROC profiles. Thereafter,
the resulting shape-complemented pharmacophores were
used as 3D search queries to screen several available virtual
molecular databases for new β-D-glucosidase inhibitors.

CATALYST models drug-receptor interactions using
information derived from the ligand structures [26–34].
HYPOGEN identifies a 3D array of a maximum of five
chemical features common to active training ligands that
provide relative alignment for each input molecule consis-
tent with binding to a proposed common receptor site. The
conformational flexibility of training ligands is modeled by
creating multiple conformers that cover a specified energy
range for each input molecule [23, 29–31, 35–39].

The SHAPE module in CATALYST is a shape-based
similarity searching method. The Van der Waals surface of
a molecule (in a certain conformation) is calculated and
represented as a set of points of uniform average density
on a grid. The surface points enclose a volume on the
grid. The geometric center of the set of points is
computed, along with the three principal component
vectors passing through the center. The maximum extents
along each principal axis and the total volume are
calculated. These provide shape indices that can be
compared with the query and used in an initial screening
step to eliminate poor matches from further consideration
[40]. CATALYST pharmacophores, with or without shape
constraints, have been used as 3D queries for database
searching and in 3D-QSAR studies [29, 31, 35, 40].

Materials and methods

Molecular modeling

Software and hardware

The following software packages were utilized in the
present research.

♦ CATALYST (Version 4.11), Accelrys (www.accelrys.
com).
♦ CERIUS2 (Version 4.10), Accelrys (www.accelrys.
com).
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♦ CS ChemDraw Ultra 6.0, Cambridge Soft Corpora-
tion (http://www.cambridgesoft.com).

Pharmacophore and QSAR modeling studies were accom-
plished using CATALYST (HYPOGEN module) and CER-
IUS2 software suites from Accelrys (San Diego, CA, www.
accelrys.com) installed on a Silicon Graphics Octane2
desktop workstation equipped with a dual 600 MHz MIPS
R14000 processor (1.0 GB RAM) running the Irix 6.5
operating system. Structure drawing was accomplished
employing ChemDraw Ultra 6.0 installed on a Pentium 4 PC.

Data set of β-D-glucosidase inhibitors

The structures of 41 β-D-glucosidase inhibitors 1–41
(Fig. 1, Table 1) were collected from recently published
literature [41–45]. The in vitro bioactivities of the collected
inhibitors were determined by employing identical bioassay
conditions and were expressed as Ki values (inhibition
constants against almond β-D-glucosidase, µM), which
allowed us to pool them for pharmacophore and QSAR
analysis. The logarithms of measured 1/Ki values were used
in 3D-QSAR, thus correlating the data linear to the free
energy change. Collected compounds that were reported to
be devoid of activity (e.g., 19, 21, 24, 25, 26, 27, 28, 29,
31, 32, 33, 35, 36, 38, 39, 40 and 41, Fig. 1 and Table 1)
were assumed to have Ki values of 2,000 µM, which is four
logarithmic cycles from the most potent compound (10, Ki=
0.04 μM). These assumptions are necessary to allow
statistical correlation and QSAR analysis. The logarithmic
transformation of Ki values should minimize any potential
errors resulting from such assumptions [21, 22]. The two-
dimensional (2D) chemical structures of the inhibitors were
sketched using ChemDraw Ultra and saved in MDL-molfile
format. Subsequently, they were imported into CATALYST,
converted into corresponding standard 3D structures and
energy minimized to the closest local minimum using the
molecular mechanics CHARMm force field implemented in
CATALYST. The resulting 3D structures were utilized as
starting conformers for CATALYST conformational analysis.

Conformational analysis

The molecular flexibilities of the collected compounds were
taken into account by considering each compound as a
collection of conformers representing different areas of the
conformational space accessible to themolecule within a given
energy range. Accordingly, the conformational space of each
inhibitor (1–41; Fig. 1, Table 1) was explored adopting the
“best conformer generation” option within CATALYST based
on the generalized CHARMm force field implemented in the
program. Default parameters were employed in the confor-
mation generation procedure, i.e., a conformational ensemble
was generated with an energy threshold of 20 kcal mol−1

from the local minimized structure, which has the lowest
energy level and a maximum limit of 250 conformers per
molecule. This search procedure will probably identify the
best 3D arrangement of chemical functionalities explaining
the activity variations among the training set [26].

Pharmacophoric hypotheses generation

All 41 molecules with their associated conformational models
were regrouped into a spreadsheet. The biological data of the
inhibitors were reported with uncertainty values of 2 or 3,
which means that the actual bioactivity of a particular inhibitor
is assumed to be situated somewhere in an interval ranging
from 1/2 to 2 or 1/3 to 3 times the reported bioactivity value of
that inhibitor, respectively [30, 32, 34]. The uncertainty value
is of great impact on the qualities of the resulting
pharmacophores, as it controls the number of training
compounds within the “most potent category”.

Subsequently, a structurally diverse training set was
selected for pharmacophore modeling of β-D-glucosidase: 1,
9, 10, 13, 14, 15, 21, 22, 23, 24, 25, 27, 34, 37, 38 and 39
(Fig. 1, Table 1). Typically, CATALYST requires informative
training sets that include at least 16 compounds of evenly
spread bioactivities over at least three and a half logarithmic
cycles. Lesser training lists could lead to chance correlation
and thus faulty models [30, 32, 34]. The selected training set
was utilized to conduct eight modeling runs (Table A,
Electronic Supplementary Material) to explore the pharma-
cophoric space of β-D-glucosidase inhibitors. The explora-
tion process included an altering interfeature spacing
parameter (100 and 300 pm) and the maximum number of
allowed features in the resulting pharmacophore hypotheses,
i.e., they were allowed to vary from 4 to 5 for the first, third,
fifth, and seventh runs and from 4 to 4 for the second, fourth,
sixth and eighth runs (Table A, Electronic Supplementary
Material). Pharmacophore modeling employing CATALYST
proceeds through three successive phases: constructive
phase, subtractive phase and optimization phase [30, 32,
34]. During the constructive phase, CATALYST generates
common conformational alignments among the most-active
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Fig. 1 The chemical scaffolds of β-D-glucosidase training com-
pounds. Detailed structures are given in Table 1
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training compounds. Only molecular alignments based on a
maximum of five chemical features are considered. The
program identifies a particular compound as being within the
most active category if it satisfies Eq. 1 [30, 32, 34].

MAct� UncMActð Þ � Act=UncActð Þ > 0:0 ð1Þ

Where “MAct” is the activity of the most active
compound in the training set, “Unc” is the uncertainty
of the compounds and “Act” is the activity of the
training compounds under question. However, if there
are more than eight most-active inhibitors, only the top
eight are used. Therefore, in this case, the most potent

Table 1 The structures of β-D-glucosidase inhibitors utilized in modeling. The corresponding scaffolds are displayed in Fig. 1

No R1 R2 R3 R4 R5 R6 X Y
Ki values (µM)

against β-D-
glucosidase

1* (S)OH (S)OH (S)OH H H H C N 1.00

2 (S)OH (S)OH (S)OH H H C N 15 

3 (S)OH (S)OH (S)OH H H C N 2.80

4 (S)OH (S)OH (S)OH H H C N 1.60

5 (S)OH (S)OH (S)OH H
HN

H C N 170

6 (S)OH (S)OH (S)OH H
N

H C N 2.80

7* (S)OH (S)OH (S)OH H CH3 H C N 5.20

8 (S)OH (S)OH (S)OH H CH2OH H C N 20.0

9 (S)OH (S)OH (S)OH H H C N 0.08

10 (S)OH (S)OH (S)OH H H C N 0.04

11* (S)OH (S)OH (S)OH H H C N 0.09

12 (S)OH (S)OH (S)OH H H C N 0.06
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category of training compounds included 9, 10, 13, 14
and 15.

In the subsequent subtractive phase, CATALYST elimi-
nates some hypotheses that fit inactive training compounds. A
particular training compound is defined as being inactive if it
satisfies Eq. 2 [30, 32, 34]:

Log Actð Þ � log MActð Þ > 3:5 ð2Þ

Accordingly, compounds 21, 24, 25, 27, 37, 38 and 39
are considered least active and therefore employed in the
subtractive phase.

However, in the optimization phase, CATALYST applies
fine perturbations in the form of vectored feature rotation,
adding new features and/or removing a feature, to selected
hypotheses that survived the subtractive phase, in an
attempt to find new models of enhanced bioactivity/

Table 1 (continued)

No R1 R2 R3 R4 R5 R6 X      Y 
Ki values (µM) 

against β-D-
glucosidase 

13 (S)OH (S)OH (S)OH H H 
N  

C N 0.05 

14 (S)OH (S)OH (R)OH H H 
N  

C N 0.14 

15 (S)OH (S)OH (S)OH H H CH3 C N 0.19 

16 (S)OH (S)OH (S)OH H H CH2OH C N 0.10 

17 (S)OH (S)OH (S)OH H CH2OH 
 

C N 0.31 

18 (S)OH (S)OH (S)OH H 
  

C N 4.00 

19 (S)OH (S)OH (S)OH H 
 HN  

C N NAa 

20 (S)OH (S)OH (S)OH H CH2CH2 CH2CH2 C N 350 

21* (R)OH (R)OH (R)OH H H H C N NA 

22 (S)OH (R)OH (R)OH H H H C N 20 

23 (S)OH (S)OH (R)OH H H H C N 17 

24 (R)OH (S)OH (R)OH H H H C N NA 
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mapping correlation, i.e., improved 3D-QSAR properties.
Eventually, CATALYST selects the highest-ranking models
(ten by default) and presents them as the optimal pharmaco-
phore hypotheses resulting from the particular automatic
modeling run. In conclusion, our pharmacophore exploration
efforts, which included eight automatic runs, culminated in 80
pharmacophore models of variable qualities.

Assessment of the generated hypotheses

During pharmacophore modeling, CATALYST attempts to
minimize a cost function consisting of three terms: weight
cost, error cost and configuration cost [26, 30–34]. Weight
cost is a value that increases as the feature weight in a
model deviates from an ideal value of 2. The deviation

Table 1 (continued)

No R1 R2 R3 R4 R5 R6 X Y 
Ki values (µM) 

against β-D-
glucosidase 

25 (R)OH (S)OH (S)OH H H H C N NA 

26 (R)OH (R)OH (S)OH H H H C N NA 

27 (S)OH (R)OH (S)OH H H H C N NA 

28* (R)OH (R)OH (R)OH (S)CH2OH H H N C NA 

29 (S)OH (R)OH (S)OH (R)CH2OH H H N C NA 

30 (R)OH (S)OH (R)OH (R)CH2OH H H N C 230 

31 (R)OH H (S)OH (R)CH2OH H H N C NA 

 32* (R)OH (R)OH (R)CH2OH - - - C N NA 

33 (S)OH (R)OH (R)CH2OH - - - C N NA 

 34* (S)OH (S)OH (R)CH2OH - - - C N 64 

35 (R)OH (S)OH (R)CH2OH - - - C N NA 

36 (S)OH (S)OH (S)CH2OH - - - C N NA 
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between the estimated activities of the training set and their
experimentally determined values adds to the error cost.
The activity of any compound can be estimated from a
particular hypothesis through Eq. 3 [26].

Log EstimatedActivityð Þ ¼ Iþ Fit ð3Þ
Where, I is the intercept of the regression line obtained

by plotting the log of the biological activity of the training
set compounds against the Fit values of the training
compounds. The Fit value for any compound is obtained
automatically employing Eq. 4 [26].

Fit ¼
X

mapped hypothesis features�W 1�
X

disp=tolð Þ2
h i

ð4Þ
Where, Σmapped hypothesis features represents the

number of pharmacophore features that successfully super-
impose (i.e., map or overlap with) corresponding chemical
moieties within the fitted compound, and W is the weight of
the corresponding hypothesis feature spheres (this value is
fixed at 1.0 in CATALYST-generated models), disp is the
distance between the center of a particular pharmacophoric
sphere (feature centroid) and the center of the corre-
sponding superimposed chemical moiety of the fitted
compound, tol is the radius of the pharmacophoric feature
sphere (known as Tolerance, equals 1.6Å by default) and
Σ(disp/tol)2 is the summation of (disp/tol)2 values for all
pharmacophoric features that successfully superimpose

corresponding chemical functionalities in the fitted com-
pound [26].

The third term, i.e., the configuration cost, penalizes the
complexity of the hypothesis. This is a fixed cost, which is
equal to the entropy of the hypothesis space. The greater
the numbers of features (a maximum of five) in a generated
hypothesis, the higher the entropy with subsequent increase
in this cost. The overall cost (total cost) of a hypothesis is
calculated by summing over the three cost factors; however,
error cost is the main contributor to total cost. CATALYST
also calculates the cost of the null hypothesis, which
presumes that there is no relationship in the data and that
experimental activities are distributed normally about their
mean. Accordingly, the greater the difference from the
null hypothesis cost, the more likely that the hypothesis
does not reflect a chance correlation. In a successful
automatic modeling run, CATALYST ranks the generated
models according to their total costs [26]. Table B in the
Electronic Supplementary Material summarizes the success
criteria of best representative pharmacophores for each
modeling run.

An additional approach to assessing the quality of
CATALYST-HYPOGEN pharmacophores is cross-
validation using the Cat-Scramble program implemented
in CATALYST. This validation procedure is based on
Fisher’s randomization test [46]. In this validation test, we
selected a 95% confidence level, which instructs CATALYST
to generate 19 random spreadsheets by the Cat-Scramble

Table 1 (continued)

No R1 R2 R3 R4 R5 R6 X Y 
Ki values (µM) 

against β-D-
glucosidase 

37 (R)OH (S)OH (S)CH2OH - - - C N 100 

38 (R)OH (R)OH (S)CH2OH - - - C N NA 

 39* (S)OH (R)OH (S)CH2OH - - - C N NA 

40 (S)CH2OH (S)OH (R)CH2OH - - - N C NA 

41 (R)OH (S)OH (R)OH - - - N C NA 

*These compounds were employed as the external test set in QSAR modeling 
aNA = Not active 
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command. Subsequently, CATALYST-HYPOGEN is chal-
lenged to use these random spreadsheets to generate hypoth-
eses using exactly the same features and parameters used in
generating the initial unscrambled hypotheses [47]. Success
in generating pharmacophores of comparable cost criteria to
those produced by the original unscrambled data reduces the
confidence in the training compounds and the unscrambled
original pharmacophore models.

Clustering of the generated pharmacophore hypotheses

The generated pharmacophoric models (80) were clustered
utilizing the hierarchical average linkage method available
in CATALYST. Subsequently, the highest-ranking repre-
sentatives, as judged based on the correlation (r) of their
best-fit values against the logarithmic transformation of the
corresponding inhibitory Ki values of the training com-
pounds, were selected to represent their corresponding
clusters in subsequent QSAR modeling.

QSAR modeling

A set of training inhibitors was selected from the collected
list (1–41, Fig. 1, Table 1) for QSAR modeling. However,
since it is essential to access the predictive power of the
resulting QSAR models on an external set of inhibitors,
eight molecules (ca. 20% of the dataset) were employed as
an external test set to validate the QSAR models. The test
molecules were selected as follows: the inhibitors were
ranked according to their Ki values, subsequently; every
fifth compound was selected for the test set starting from
the high-potency end. This selection considers the fact that
the test molecules should represent a range of biological
activities similar to that of the training set. The selected test
set for QSAR modeling was: 1, 7, 11, 21, 28, 32, 34, 39
(numbers as in Fig. 1 and Table 1).

The logarithm of measured 1/Ki (µM) values was used in
QSAR, thus correlating the data linear to the free energy
change. The chemical structures of the inhibitors were
imported into CERIUS2 as standard 3D single conformer
representations in SD format. Subsequently, different descrip-
tor groups were calculated for each compound employing the
C2.DESCRIPTOR module of CERIUS2. The calculated
descriptors included various simple and valence connectivity
indices, electro-topological state indices and other molecular
descriptors [43]. Furthermore, the training compounds were
fitted (using the Best-fit option in CATALYST) against the
representative pharmacophores and their fit values were
added as additional descriptors. The fit value for any
compound is obtained automatically via Eq. 4 [26].

Genetic function approximation (GFA) was employed to
search for the best possible QSAR regression equation
capable of correlating the variations in biological activities

of the training compounds with variations in the generated
descriptors, i.e., multiple linear regression modeling
(MLR). GFA techniques rely on the evolutionary operations
of “crossover and mutation” to select optimal combinations
of descriptors (i.e., chromosomes) capable of explaining
bioactivity variation among training compounds from a
large pool of possible descriptor combinations, i.e., chro-
mosomes population. However, to avoid overwhelming
GFA-MLR with large number of poor descriptor popula-
tions, we removed lowest-variance descriptors (20%) prior
to QSAR analysis. Each chromosome is associated with a
fitness value that reflects how good it is compared to other
solutions. The fitness function employed herein is based on
Friedman’s ‘lack-of-fit’ (LOF) [48].

Our preliminary diagnostic trials suggested the following
optimal GFA parameters: explore linear, quadratic and
spline equations at mating and mutation probabilities of
50%; population size=500; number of genetic iterations=
30,000 and LOF smoothness parameter=1.0. However,
to determine the optimal number of explanatory terms
(QSAR descriptors), it was decided to scan and evaluate all
possible QSAR models resulting from three to six explan-
atory terms.

All QSAR models were validated employing leave one-
out (LOO) cross-validation (rLOO

2), bootstrapping (rBS
2)

and predictive r2 (rPRESS
2) calculated from the test set. The

predictive rPRESS
2 is defined as [48]:

r2PRESS ¼ SD� PRESS=SD ð5Þ

Where SD is the sum of the squared deviations between
the biological activities of the test set and the mean activity
of the training set molecules, and PRESS is the squared
deviations between predicted and actual activity values for
every molecule in the test set.

Addition of shape constraints

Our QSAR-based pharmacophoric hypotheses were comple-
mented with ligand-shapes and were employed as 3D search
queries. The shape components were introduced employing
the CatShape module of CATALYST [49]. Each pharmaco-
phore was mapped against the most potent training inhibitor
10 (Ki=0.04 μM). The best fitted conformers were used to
generate shape constraints (with tolerance values ranging
from 95 to 105%) that were subsequently merged with the
corresponding pharmacophores [26].

In silico screening for new β-D-glucosidase inhibitors

Each shape-complemented pharmacophore model was
employed as 3D search query to screen the national cancer
institute list (NCI, 238,819 compounds) and our own in-
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house database of known drugs and agrochemicals (DAC,
3,005 compounds). In silico screening was performed
employing the “Best Flexible Database Search” option
implemented within CATALYST. The NCI hits were
subsequently filtered based on Lipinski’s and Veber’s rules
[50, 51]. However, DAC hits were processed without
subsequent post-filtering. Surviving hits were fitted against
each corresponding pharmacophore model using the “best
fit” option implemented within CATALYST. The fit values
together with the relevant molecular descriptors of each hit
were substituted in the corresponding QSAR equations.
The highest ranking molecules based on QSAR predictions
were acquired and tested in vitro.

In vitro experimental studies

Materials

β-D-glucosidase (EC 3.2.1.21) from almond and its
corresponding substrate p-nitrophenyl-β-D-glucopyranoside
were purchased from Sigma-Aldrich (St. Louis, MO). NCI
hits were kindly donated from the National Cancer Institute.

Preparation of substrate and enzyme solution

p-Nitrophenyl-β-D-glucopyranoside aqueous solution
(13 mM) was prepared in acetate buffer (pH 5) as substrate
solution for β-D-glucosidase. While, β-D-glucosidase was
dissolved in acetate buffer (pH 5) to obtain final solution of
0.032 units/µL.

Preparation of hit compounds for in vitro assay

The tested compounds were dissolved initially in DMSO to
yield stock solutions of 0.01 M. Subsequently, they were
diluted to the required concentrations (7, 10, 40 and
100 μM) with the buffer solution.

β-D-glucosidase inhibition by hit compounds

The inhibitory potentials of the hit compounds against β-D-
glucosidase were evaluated by spectrophotometric assay of
released p-nitrophenol. The β-D-glucosidase solution (0.16
units) was pre-incubated with 7, 10, 40 and 100 µM of each
particular hit compound for 1 h at 25°C. The final
concentration of DMSO did not exceed 1.0%. Subsequently,
substrate solution (1.3 mM) was added to the reaction mixture
and the concentration of released p-nitrophenol was monitored
at 405 nm every minute within a 5-min period. Substrate
concentrations were selected to approximate Km values [41–
45]. The percentage inhibition was determined from the
residual activity for each compound by comparing the β-D-
glucosidase activity with and without hit compound [41–45].

Results and discussion

CATALYST enables automatic pharmacophore construction
by using a collection of molecules with activities ranging
over a number of orders of magnitude. CATALYST pharma-
cophores (hypotheses) explain the variability of activity of
the molecules with respect to the geometric localization of the
chemical features present in the molecules used to build it.
The pharmacophore model consists of a collection of features
necessary for the biological activity of the ligands arranged in
3D space (e.g., hydrogen bond acceptors and donors,
hydrophobic regions, etc.). Different hypotheses were gener-
ated for a series of β-D-glucosidase inhibitors.

Data mining and conformational coverage

The literature was surveyed extensively to identify as many
reported structurally diverse β-D-glucosidase inhibitors as
possible (1–41, Fig. 1 and Table 1). However, we were
confined by assay methodologies to 41 compounds assayed
via identical bioassay conditions (against almond β-D-
glucosidase). The 2D structures of the inhibitors were
imported into CATALYST and converted automatically into
plausible 3D single conformer representations. The result-
ing single conformer 3D structures were used as starting
point for conformational analysis and in the determination
of various molecular descriptors for QSAR modeling.

The conformational space of each inhibitor was sampled
extensively utilizing the poling algorithm employed within
the CONFIRM module of CATALYST [31]. Conforma-
tional coverage was performed employing the “Best”
module to ensure extensive sampling of conformational
space. Efficient conformational coverage guarantees mini-
mum conformation-related noise during pharmacophore
generation and validation stages. Pharmacophore genera-
tion and pharmacophore-based search procedures are
known for their sensitivity to inadequate conformational
sampling within the training compounds [52].

Exploration of the pharmacophoric space
of β-D-glucosidase inhibitors

CATALYST-HYPOGEN enables automatic pharmacophore
construction by using a collection of at least 16 molecules
with bioactivities spanning over 3.5 orders of magnitude
[26, 30–34]. The generated 3D pharmacophores can be
used as search queries to screen virtual 3D-structural
libraries. As we have an informative list of 41 inhibitors
of evenly spread bioactivities over more than 3.5 orders of
magnitude, we were prompted to employ HYPOGEN to
identify possible pharmacophoric binding modes assumed
by inhibitors of β-D-glucosidase. HYPOGEN implements
an optimization algorithm that evaluates a large number of
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potential models for a particular target through fine perturba-
tions to hypotheses that survive the subtractive and construc-
tive phases [30]. The extent of the evaluated space is reflected
by the configuration (Config.) cost calculated for each
modeling run. It is generally recommended that the Config.
Cost of any HYPOGEN run should not exceed 17
(corresponding to 217 hypotheses to be assessed by CATA-
LYST) to guarantee thorough analysis of all models [31].

The size of the investigated pharmacophoric space is a
function of training compounds, selected input chemical
features and other CATALYST control parameters [31].
Restricting the extent of explored pharmacophoric space
should improve the efficiency of optimization by allowing
effective evaluation of limited number of pharmacophoric
models. On the other hand, extensive restrictions imposed on
the pharmacophoric space may reduce the possibility of
discovering optimal pharmacophoric hypotheses, as they may
occur outside the “boundaries” of the pharmacophoric space.

Therefore, we decided to explore the pharmacophoric space
of β-D-glucosidase inhibitors under reasonably imposed
“boundaries” through eight HYPOGEN automatic runs and
a carefully selected training set. Table A (Electronic
Supplementary Material) summarizes CATALYST run
parameters employed in exploring the pharmacophoric space
of β-D-glucosidase inhibitors. The training set (see Materials
and methods) was selected in such away to guarantee
maximal 3D diversity and continuous bioactivity spread over
more than 3.5 logarithmic cycles. Furthermore, the training
compounds were selected in such a way that differences in
their inhibitory bioactivities are attributable primarily to the
presence or absence of pharmacophoric features (e.g., HBA or
HBD or Hbic or RingArom) rather than steric shielding and/or
bioactivity-enhancing or -reducing auxiliary groups (e.g.,
electron donating or withdrawing groups). Special emphasis
was placed on the 3D diversity of the most active compounds
in the training set due to their significant influence on the
extent of the evaluated pharmacophore space through the
Constructive Phase of the HYPOGEN algorithm.

Guided by our reasonably restricted pharmacophore
exploration concept, we restricted the software to explore
pharmacophoric models from zero to three HBA, HBD, Hbic,
and RingArom features and from zero to one PI features
instead of the default range of zero to five. Furthermore, we
instructed HYPOGEN to explore only four- and five-featured
pharmacophores, i.e., ignore models of lesser number of
features (see Table A in Electronic Supplementary Material).
The latter restriction has the advantage of narrowing the
investigated pharmacophoric space and representing the
feature-rich nature of known β-D-glucosidase inhibitors.

In each run, the resulting binding hypotheses were
ranked automatically according to their corresponding
“total cost” value, defined as the sum of error cost, weight
cost and configuration cost [26, 30–34]. Error cost provides

the highest contribution to total cost and it is related directly
to the capacity of the particular pharmacophore as the 3D-
QSAR model, i.e., in correlating the molecular structures to
the corresponding biological responses [26, 30–34].
HYPOGEN also calculates the cost of the null hypothesis,
which presumes that there is no relationship in the data and
that experimental activities are distributed normally about
their mean. Accordingly, the greater the difference from the
null hypothesis cost (residual cost, Table B, Electronic
Supplementary Material), the more likely that the hypoth-
esis does not reflect a chance correlation [26, 30–34].

An additional validation technique, known as Cat.
Scramble, was recently introduced into CATALYST [26].
This procedure is based on Fisher’s randomization test [46].
In this test, the biological data and the corresponding
structures are scrambled several times, and the software is
challenged to generate pharmacophoric models from the
randomized data. The confidence in the parent hypotheses
(i.e., generated from unscrambled data) is lowered propor-
tional to the number of times the software succeeds in
generating binding hypotheses from scrambled data of
apparently better cost criteria than the parent hypotheses.

Eventually, 80 pharmacophore models emerged from
eight automatic HYPOGEN runs. All models illustrated
confidence levels≥95%. Clearly ,from Table B (Electronic
Supplementary Material), all models shared comparable
features and acceptable statistical success criteria. The
emergence of several comparable pharmacophore models
suggests the ability of β-D-glucosidase inhibitors to assume
multiple pharmacophoric binding modes within the binding
pocket for each enzyme. Therefore, to select any particular
pharmacophore hypothesis as a sole representative of the
binding process is quite challenging.

QSAR modeling

Pharmacophoric hypotheses are important tools in drug
design and discovery as they provide excellent insights into
ligand–macromolecule recognition; moreover, they can be
used as 3D search queries to look for new and biologically
interesting scaffolds. However, their predictive value as 3D-
QSAR models is usually limited by steric shielding and
auxiliary groups (electron-donating and -withdrawing moie-
ties) [33]. This point, combined with the fact that pharma-
cophore modeling of β-D-glucosidase inhibitors furnished
many binding hypotheses of comparable statistical criteria
(Table B, Electronic Supplementary Material) prompted us to
employ classical QSAR analysis to search for the best
combination of pharmacophore(s) and other 2D descriptors
capable of explaining bioactivity variation across the whole
list of collected inhibitors 1–41 (Fig. 1 and Table 1). We
employed GFA and MLR QSAR (GFA-MLR-QSAR)
analysis to search for an optimal QSAR equation(s).
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GFA-MLR-QSAR selects optimal descriptor combinations
based on the Darwinian concept of genetic evolution whereby
the statistical criteria of regression models from different
descriptor combinations (chromosomes) are employed as
fitness criteria [48]. GFA-MLR-QSAR analysis was
employed to explore various combinations of pharmaco-
phores and other structural descriptors and to evaluate their
statistical properties as predictive QSAR models.

The fit values obtained by mapping the representative
hypotheses against all collected inhibitors 1–41 (Fig. 1, Table 1)
were enrolled as independent variables (genes) in a cycle of
GFA-MLR-QSAR analysis over 30,000 iterations employing
Friedman’s LOF fitness criterion [48, 53]. However, since it is
essential to access the predictive power of the resulting QSAR
models on an external set of inhibitors, we randomly selected
eight inhibitors (Fig. 1, Table 1) and employed them as an
external test set for validating the QSARmodels (i.e., r2PRESS).
Moreover, all QSAR models were cross-validated automati-
cally using LOO crossvalidation in CERIUS2 [48, 53].

Equations 6, 7 and 8 show the details of the optimal
QSAR models. Figures 2, 3, and 4 show the corresponding
scatter plots of experimental versus calculated bioactivities.
Interestingly, Eqs. 6 and 7 required the pharmacophore fit
values to be in spline form to achieve significant extrapolatory
prediction against the external test set, while Eq. 8 required
quadratic transformation of the pharmacophoric fit values.

Log 1=Kið Þ ¼ �2:52þ 0:62 Hypo10=1� 7:03½ �
þ 16:67 3#C � 0:99

� �� 2:16 3#P � 5:60
� �

�9:18 ShadowXYfrac� 0:60½ �
þ133:01 �0:089� JursFNSA3½ �

r233 ¼ 0:92;

F� statistic ¼ 58:42; r2LOO ¼ 0:89;

r2BS ¼ 0:918; r2PRESS ¼ 0:61

ð6Þ

Log 1=Kið Þ ¼ �0:42þ 0:73 Hypo4=4� 8:03½ �
�1:22 3� AtypeH51½ � � 7:72 SaasN� 1:63½ �

r233 ¼ 0:87; F� statistic ¼ 61:16; r2LOO ¼ 0:81;

r2BS ¼ 0:87; r2PRESS ¼ 0:55 ð7Þ

Log 1=Kið Þ ¼ �2:13þ 0:021 Hypo9=4½ �2 þ 6:10 3#C
� �2

�0:16 2#
� �2 � 8:66 ShadowXYfracð Þ2

þ2:63� 10 JursPPSA3ð Þ2

r233 ¼ 0:89; F� statistic ¼ 40:92; r2LOO ¼ 0:84;

r2BS ¼ 0:89; r2PRESS ¼ 0:58

ð8Þ

where r233 is the correlation coefficient against 33 training
compounds, r2LOO is the leave-one-out correlation coeffi-
cient, r2BS is the bootstrapping regression coefficient, and
r2PRESS is the predictive r2 determined for the eight test

Fig. 2 Experimental versus fitted ( , 33 training compounds, r2LOO=
0.889) and predicted ( , 8 compounds, r2PRESS=0.614) bioactivities
calculated from quantitative structure-activity relationship (QSAR)
Eq. 6 for β-D-glucosidase inhibitors. Solid lines Regression lines for
the fitted bioactivities, dotted lines 1.0 log point error margins

Fig. 3 Experimental versus fitted ( , 33 training compounds, r2LOO=
0.814) and predicted ( , 8 compounds, r2PRESS=0.554) bioactivities
calculated from QSAR Eq. 7 for β-D-glucosidase inhibitors. Solid
lines Regression lines for the fitted bioactivities, dotted lines 1.0 log
point error margins

Fig. 4 Experimental versus fitted ( , 33 training compounds, r2LOO=
0.837) and predicted ( , 8 compounds, r2PRESS=0.578) bioactivities
calculated from QSAR Eq. 8 for β-D-glucosidase inhibitors. Solid
lines Regression lines for the fitted bioactivities, dotted lines 1.0 log
point error margins

453J Mol Model (2011) 17:443–464



compounds [48, 53, 54]. Hypo10/1, Hypo4/4 and Hypo9/4
(Figs. 5, 6, 7, Table 2) represent the fit values of the
training compounds against these three pharmacophores as
calculated from Eqs. 6, 7 and 8. 2χ, 3χC and 3χP are the
second order, third order cluster and path connectivity

indices, respectively. ShadowXYfrac is one of the Shadow
descriptors. Shadow descriptors are geometric descriptors
that characterize the shape of the molecules; ShadowXYfrac
represents the shadow of the molecule in the XY surface.
JursFNSA3 and JursPPSA3 are Jurs charged partial surface
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(E)  (F)

(C)

Fig. 5 a Pharmacophoric features of the binding model Hypo10/1:
green vectored spheres HBA, blue spheres Hbic, orange vectored
spheres RingArom. b Hypo10/1 mapping the most potent training

inhibitor 10 (Table 1 , Fig. 1, Ki=0.04 µM). c As b, with shape
constraints. d Hypo10/1 fitted against discovered hit 42. e, f Chemical
structures of 10 and 42, respectively
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area descriptors encoding the fractional charged partial
surface area (obtained from) and atomic charge weighted
positive surface area (=Σ[solvent-accessible surface area ×
partial charge for all positively charged atoms]), respectively.
SaasN is an electrotopological sum descriptor for trisubsti-

tuted aromatic nitrogen atoms. AtypeH51 is atom-type-based
AlogP descriptor [48, 55].

Several descriptors emerged in Eqs. 6 and 7 in spline
format. The spline terms employed herein are “truncated
power splines” and are denoted by bolded brackets ([ ]).
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Fig. 6 a Pharmacophoric features of the binding model Hypo4/4:
violet vectored spheres HBD, blue spheres Hbic, orange vectored
spheres RingArom. b Hypo4/4 mapping the most potent training

inhibitor 10 (Table 1, Fig. 1, Ki=0.04 µM). c As b with shape
constraints. d Hypo4/4 fitted against discovered hit 43. e, f Chemical
structures of 10 and 43, respectively
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For example, [f(x)−a] equals zero if the value of (f(x)−a) is
negative; otherwise, it equals (f(x)−a) [48].

Interestingly, Hypo10/1 and Hypo4/4 emerged in Eqs. 6
and 7 in spline format, indicating that each binding mode
contributes to ligand–β-D-glucosidase affinity only if the fit
value of the particular ligand exceeds the corresponding
spline threshold. For example, the ability of a certain ligand
to map Hypo10/1 will impact its actual affinity to β-D-
glucosidase only if its fit value exceeds 7.03 (the spline
intercept associated with this pharmacophore in Eq. 6).

Since the two spline cutoffs (of both pharmacophores)
resemble high overall ligand/pharmacophore mapping (the
maximum value is 14.0), it appears that ligand binding to
β-D-glucosidase is sensitive to misalignments among the
attracting moieties within the complex such that lowering
the fits value below 7.03 and 8.03 for Hypo10/1 and
Hypo4/4, respectively, nullifies any affinity gains from
mapping the pharmacophores. A similar trend is also seen
in Eq. 8, albeit in quadratic format. Emergence of Hypo9/4
in quadratic format in Eq. 8 suggests that ligand–β-D-
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Fig. 7 a Pharmacophoric features of the binding model Hypo9/4:
green vectored spheres HBA, violet vectored spheres HBD, blue
spheres Hbic, orange vectored spheres RingArom. b Hypo9/4

mapping the most potent training inhibitor 10 (Table 1, Fig. 1, Ki=
0.04 µM). c As b with shape constraints. d Hypo9/4 fitted against
discovered hit 42. e, f Chemical structures of 10 and 42, respectively
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glucosidase affinity is more sensitive to fitting the pharma-
cophoric models at higher fit values compared to lower
values, i.e., misalignment among the attracting moieties
within the complex drastically reduce ligand/β-D-glucosi-
dase affinities, suggesting that ligand binding to β-D-
glucosidase is extremely sensitive to minor misalignments
between attracting moieties within the complex. Emergence
of distinct pharmacophoric model in each QSAR equation
suggests multiple binding modes assumed by different
ligands within the binding pocket. Figures 5–7 show the
pharmacophoric features of the binding models that

emerged in QSAR Eqs. 6–8 and how they map the most
potent training compound and the most potent discovered
hit. Table 2 shows the corresponding X, Y, and Z
coordinates of each pharmacophore.

Emergence of connectivity, electrotopological and shad-
ow descriptors in Eqs. 6–8 is suggestive of certain role
played by ligand topologies in the binding process.
However, despite their predictive significance, the informa-
tion content of these topological descriptors is quite
obscure. On the other hand, emergence of JursFNSA3 and
JursPPSA3 in Eqs. 6 and 8, respectively, suggests a direct

Table 2 The pharmacophoric features and corresponding weights, tolerances and 3D coordinates of Hypo10/1, Hypo4/4 and Hypo9/4 generated
for β-D-glucosidase inhibitors

Model Definitions Chemical features

Hypo10/1a HBA HBA Hbic RingArom

Weights 2.89844 2.89844 2.89844 2.89844

Tolerances 1.60 2.20 2.20 2.20 1.60 2.20 2.20 2.20 1.60 1.60 1.60

Coordinates X −5.13 −5.22 −2.32 −2.92 3.78 −0.29 0.45

Y 0.13 −2.88 2.34 2.81 −0.46 0.60 −1.82
Z −1.46 −1.13 −1.09 −4.02 −1.24 0.65 −0.96

Hypo4/4b HBD HBD Hbic Hbic RingArom

Weights 2.98110 2.98110 2.98110 2.98110

Tolerances 1.60 2.20 1.60 2.20 1.60 1.60 1.60

Coordinates X −2.83 −5.34 −5.11 −4.38 2.79 −0.22 −1.33
Y −1.68 −1.48 −1.02 −3.75 −0.22 0.82 1.18

Z −1.18 −2.81 −1.03 −0.02 −2.17 −0.38 −3.15
Hypo9/4c HBA HBD Hbic Hbic RingArom

Weights 2.70358 2.70358 2.70358 2.70358

Tolerances 1.60 2.20 1.60 2.20 1.60 1.60 1.60

Coordinates X −4.90 −6.88 −1.90 −2.87 4.30 −0.43 −1.38
Y −1.08 0.02 −2.04 −4.88 0.34 0.02 −0.99
Z −0.91 1.06 −1.32 −1.33 −1.28 0.79 3.45

a Hypo10/1: hypothesis number 10 generated in run number 1
b Hypo4/4: hypothesis number 4 generated in run number 4
c Hypo9/4: hypothesis number 9 generated in run number 4

Table 3 Performance of QSAR-selected pharmacophores and their shape complemented versions as 3D search queries

Pharmacophore model ROC-AUC ACC SPC TPR FNR

Hypo10/1 85.74 96.60 96.92 0.88 0.03

Hypo4/4 89.48 96.60 96.92 0.88 0.03

Hypo9/4 83.59 96.60 97.36 0.75 0.03

Shape-complemented Hypo10/1 94.71 96.60 96.92 0.88 0.03

Shape-complemented Hypo4/4 98.29 96.60 96.92 0.88 0.03

Shape-complemented Hypo9/4 95.15 96.60 97.36 0.75 0.03

ROC Receiver operating characteristic, AUC area under the curve, ACC overall accuracy, SPC overall specificity, TPR overall true positive rate,
FNR overall false negative rate
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Fig. 8 Receiver operating characteristic (ROC) curves conducted for QSAR-selected models. a Hypo10/1, b shape-complemented Hypo10/1
(Shape-Hypo10/1), c Hypo4/4, d Shape-Hypo4/4, e Hypo9/4 and f Shape-Hypo9/4
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relationship between ligand/β-D-glucosidase affinity and
ligand charges, which points to the hydrophilic nature of
the binding sites.

ROC curve analysis and shape constraints

To further validate the resulting models (both QSAR and
pharmacophores), we subjected our QSAR-selected phar-
macophores to ROC analysis, which tests the ability of a
particular pharmacophore to classify a set of compounds as
actives or decoys (see section on ROC analysis in
Electronic Supplementary Material) [56–61]. The number
of actives in the ROC testing list was limited to eight while
the decoys were extended to 288 (i.e., each active
compound was challenged with 36 decoys) to provide a
proper challenge for the pharmacophoric models, particu-

N

NHO

HO

HO OH

                             (A) (B) 

  (C)                        (D) (E)   

HIS342

Fig. 9 a Crystallographic structure of phenethylglucoimidazole
cocrystallized with β-D-glucosidase (PDB code: 2CER, resolution:
2.2 Å). b Chemical structure of phenethyl-glucoimidazole. c, d, e
Mapping the phenethyl-glucoimidazole against Hypo4/4, Hypo9/4

and Hypo10/1, respectively. Blue-colored aromatic ring indicates the
dangling of this ring as reflected by the wide distribution of
corresponding electron density

Table 4 Number of compounds captured by shape-complemented β-
D-glucosidase pharmacophores

3D
Database

Post screening
filteringc

Pharmacophore modelsd

Hypo10/1 Hypo4/4 Hypo9/4

NCIa Before 1,960 441 764

After 1,869 412 141

DACb 20 2 3

a National cancer institute list of available compounds (238,819 structures)
b In-house list of established drugs and agrochemicals (3,005 structures)
c Post screening filtering employing Lipinski’s and Veber’s rules. One
Lipinski's violation was tolerated
d Number of hits captured by the sterically refined versions of the
pharmacophore models
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larly as they are required to select sterically and pharma-
cophorically challenging TSAs during in silico screening.

Table 3 and Fig. 8 show the ROC results from our
QSAR-selected pharmacophores. In both the figure and the
table, all QSAR-selected models clearly illustrate mediocre
overall performance, with area under the curve (AUC)
values ranging from 85.74% to 89.48%.

In order to enhance the ROC profiles of the QSAR-
selected models, we decided to decorate them with
shape-constraints derived from the most potent training
inhibitor 10 (Ki=0.04 μM). Shape constraints encode the
degree of 3D spatial similarity between screened com-
pounds and the template ligand used to build the shape
limitations [26, 40, 49]. To generate merged shape-
pharmacophore queries, a selected potent training com-
pound 10 was first fitted against the corresponding
pharmacophore model; thereafter, the best-fitted conform-
er of the inhibitor was used to generate shape constraints
that were subsequently merged with the pharmacophore.

Figures 5, 6 and 7 show the shape-complemented versions
of β-D-glucosidase pharmacophores.

Figure 8 and Table 3 show the ROC result of the shape-
decorated versions of the QSAR-selected models. Clearly,
the performance of shape-complemented models improved
significantly as reflected by their ROC-AUC, which ranged
from 94.71% to 98.29%.

The generated merged pharmacophore-shape queries
were employed as 3D search queries against the NCI,
drugs and agrochemical databases (Table 4).

Comparing pharmacophore models
with crystallographic complex

To further emphasize the validity of our pharmacophore/QSAR
modeling approach, we compared the crystallographic structure
of a β-D-glucosidase/ligand complex [62] (PDB code: 2CER,
resolution: 2.2 Å) with Hypo4/4, Hypo9/4 and Hypo10/1.
Figure 9 shows the chemical structure of the ligand and

HO

P
O

O

O

H
N

O

O

OH
HO

42  43

N

N
H
N

SHO

O

OH

S

N
N

NO2

OH

N

44

N
N

NO2

OH

N N
NO

OH
HO H2N O

O

OH

46 

NHO

OH

N N

Cl

ClS

O

O

HN

H2N

48  

CN

N
H

O

OH

O
N

N

O

OH

50 51

49

47

45

Fig. 10 Chemical structures of
the tested highest-ranking β-D-
glucosidase hits (as suggested
by the best QSAR models)
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compares its β-D-glucosidase complex with the way it maps
Hypo4/4, Hypo9/4 and Hypo10/1 employing rigid mapping,
i.e., fitting the ligand’s bound state against corresponding
pharmacophores without conformational adjustments.

Pharmacophore mapping against the three models
suggests that only two of the glucoimidazole hydroxyls
are involved in hydrogen-bonding within the binding
pocket, as in Figs. 9c–e, which seems to correlate with
hydrogen-bonding interactions tying these hydroxyls with
the amide and indole side chains of ASN205 and TRP433,
respectively, as in Fig. 9a. Furthermore, mapping the
imidazole ring of the phenethyl-glucoimidazole against
RingArom feature in Hypo4/4, Hypo9/4 and Hypo10/1
agrees nicely with π–π stacking involving this ring and the
phenolic side chain of TYR322, as in Fig. 9a. Finally, the
terminal phenyl ring of the phenethyl-glucoimidazole
seems to dangle in hydrophobic/aromatic pocket comprised
of VAL209, TRP361, HIS342 and ALA263, as in Fig. 9a,
which correlates with hydrophobic features in the three
pharmacophores positioned in the same region.

Clearly from the above discussion, the three models,
i.e., Hypo4/4, Hypo9/4 and Hypo10/1, represent close
binding modes assumed by the ligand within β-D-
glucosidase. These models point to a limited number of
critical interactions required for high ligand-β-D-glucosi-
dase affinity. In contrast, the crystallographic complex
reveals many bonding interactions without highlighting

critical ones. Incidentally, Fig. 9a shows only interactions
corresponding to pharmacophoric features in the pharma-
cophores; other binding interactions are hidden for clarity.

In-silico screening for β-D-glucosidase inhibitors
and subsequent in vitro evaluation

Our QSAR-selected, shape-complemented pharmaco-
phores, i.e., Hypo10/1, Hypo4/4 and Hypo9/4 (Eqs. 6–8),
were employed as 3D search queries against two available
3D flexible structural databases, namely, the NCI list of
compounds (238,819 compounds) and our in-house DAC
database (3,005 compounds), to discover new inhibitory
leads of alternative scaffolds against β-D-glucosidase.

Table 4 shows the number of hits captured by each
pharmacophore model. Hits are defined as those compounds
that have their chemical groups spatially overlap (map) with
corresponding features within the particular pharmacophoric
model. NCI hits were subsequently filtered based on Lipinski's
and Veber’s rules [50, 51]. Surviving hits were fitted against
corresponding pharmacophores (without shape constraints) and
their fit values against particular hypothesis were substituted in
QSAR Eqs. 6–8 to determine their predicted bioactivities. The
fact that the predicted Log (1/Ki) values exceeded the upper
and lower bioactivity limits of the training compounds
prompted us to employ bioactivity predictions merely to rank
the corresponding hits in order to minimize the impact of any

Table 5 QSAR estimated and in vitro bioactivities of β-D-glucosidase hit molecules captured by Hypo10/1, Hypo4/4 and Hypo9/4

No.a Name or NCI code Fit values againstb QSAR-estimates Actual affinitiesc

Hypo10/1 Hypo4/4 Hypo9/4 Log(1/Ki) Ki (nM) % Inhibition

42 43458 – – 7.0 0.804 0.157h 28d

43 345142 – 10.8 – −1.393 24.743g 27d

44 154916 – – 9.7 −3.078 1195.695h 22e

45 600667 – – 9.0 −2.178 150.821h 33e

46 601351 – – 9.1 −2.099 125.610h 10e

47 286625 – – 9.6 −1.598 39.610h 10e

48 60034 8.7 – – −0.319 2.085f 15d

49 28578 – – 9.9 0.633 0.233h 22d

50 263791 9.4 – – 2.398 0.004f 22d

51 Ancymidol 8.5 – – −3.456 2,856.145f 16e

a Hits shown in Fig. 10
b Best-fit values against corresponding binding hypothesis
c In vitro enzyme inhibition. Each value (percent inhibition) represents the average of at least two measurements
d % inhibition at 40 µM
e% inhibition at 100 µM
f Values estimated from Eq. 6
g Values estimated from Eq. 7
h Values estimated from Eq. 8
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possible extrapolatory prediction errors on decisions regarding
hits that merit subsequent in vitro testing [63].

The ten highest ranking anti-β-D-glucosidase hits were
requested for experimental validation. One hit compound
was the agrochemical ancymidol.

Figure 10 shows the chemical structures of tested hits,
while Table 5 lists the corresponding experimental bio-
activities and fit values of the tested hits against
corresponding pharmacophore models.

The tested hits were evaluated by measuring the
percentage of enzyme inhibition at 7, 10, 40 and 100 µM
and by comparing the enzyme activity in the presence and
absence of the particular hit.

Hits 42 (28% inhibition at 40 µM) and 43 (27% inhibition
at 40 µM), Fig. 10, were most promising. The two
compounds represent new anti-β-D-glucosidase inhibitory
scaffolds of potential for subsequent optimization. Interest-
ingly, all previously reported non-sugar β-D-glucosidase
inhibitors failed to exceed mM inhibitory range, e.g.,
norbornane derivatives [64]. The significance of 42 and 43
is further supported by the fact that they were assayed against
0.16 units of β-D-glucosidase while previous published
assays employed≤0.01 β-D-glucosidase units [65, 66].
Figures 5 and 7 show how 42 maps Hypo10/1 and Hypo9/
4, respectively, while Fig. 6 shows how 43 maps Hypo4/4.

Conclusions

Our results suggest that pharmacophore modeling combined
with QSAR analysis can be a useful tool for the discovery of
new scaffold of β-D-glucosidase inhibitors. The exploration
of the pharmacophoric space of different β-D-glucosidase
inhibitors was performed utilizing CATALYST-HYPOGEN
to identify high quality binding model(s). Subsequently,
QSAR analysis was employed to obtain a model that
explains bioactivity variation. Genetic algorithm and MLR
analyses were employed to access optimal QSAR model
capable of explaining the inhibitory activity variation across
41 collected β-D-glucosidase inhibitors. Three successful
β-D-glucosidase inhibitor pharmacophores emerged from
three independent equations, suggesting the existence of
more than one binding mode accessible to ligands within
the β-D-glucosidase pocket. The QSAR equations and the
associated pharmacophoric models were validated by ROC
curve analysis and experimental identification of several β-
D-glucosidase inhibitors retrieved from the NCI database
and our own in-house structural database of established
drug and agrochemicals.
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